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INTRODUCTION: Urbanization is rapidly reshaping landscapes genomic analysis to infer the evolutionary history of molestus.
around the world, which poses questions about whether and how Studies of population structure, derived allele sharing, phylogeny,
quickly animals and plants can adapt. Culex pipiens form molestus, and cross-coalescence show that molestus could not have evolved in
more commonly known as the London Underground mosquito, urban belowground habitats over the past 200 years. Instead, it first
has been held up as a benchmark for the potential speed and adapted to human environments >1000 years ago in the
complexity of urban adaptation. This intraspecific lineage within Mediterranean or Middle East, most likely in ancient Egypt or
Cx. pipiens s. s. is purported to have evolved human biting and a another early agricultural society.
suite of other human-adaptive behaviors in the subways and cellars Our genomic data also provide a major revision to our under-
of northern Europe within the past 200 years. Form molestus standing of gene flow between bird- and mammal-biting forms.
features prominently in textbooks as well as scholarly reviews of We found that genetic signatures that researchers previously
urban adaptation. Yet, the hypothesis of in situ urban evolution has ascribed to between-form hybridization instead reflect ancestral
never been rigorously tested. variation within bird-biting populations. After correcting for

this variation, we can see that true hybridization is less common
RATIONALE: In addition to spawning an enigmatic human-biting form, than previously believed and is associated with human population
Ca. pipiens s. s. is one of the most important vectors of mosquito-borne  density—a proxy for urbanization.
disease in temperate regions across the world. The ancestral form
of Cx. pipiens is bird biting and serves as a major vector of West Nile CONCLUSION: Our work debunks one of the most widely cited

virus (WNV) within bird populations. Hybridization of this ancestral examples of rapid urban adaptation—an example that has captured
bird-biting form with human-biting molestus produces mosquitoes the attention of scientists and laypeople for 25 years. Rather than
that are willing to bite both birds and humans and is hypothesized to benchmarking the speed and complexity of urban evolution, this
have driven increasing spillover of WNV to humans in the US and updated history highlights the role of early human society in
southern Europe over the past two decades. Although this hypothesis priming taxa for colonization of modern urban environments. Our
has spurred intense efforts to characterize gene flow between forms, work also revises our fundamental understanding of gene flow in
the results have been variable and confusing, with no clear consensus this important vector and opens the door to incisive investigation of
on where and to what degree gene flow occurs. the potential links between urbanization, hybridization, and

arbovirus spillover to humans. [J
RESULTS: We sequenced the whole genomes of ~350 contemporary

and historical Cz. pipiens mosquitoes from 77 populations scattered  «corresponding author. Email: yhaba@princeton.edu (Y.H.); csm7@princeton.edu (C.S.M.)
across Europe, North Africa, and western Asia and used population Cite this article as Y. Haba et al., Science 390, eady4515 (2025). DOI: 10.1126/science.ady4515
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Ancient origin of the London Underground mosquito. A human-biting form of Cx. pipiens s. s., named molestus, is found in man-made, belowground habitats across northern Europe,
Asia, and North America, but it first became famous in the London Underground subway system. The origins of molestus remain elusive, with an oft-cited hypothesis suggesting that it
evolved belowground in London <200 years ago. Whole-genome sequencing and population genomic analyses of ~350 mosquitoes densely sampled across the Western Palearctic
instead show that molestus evolved aboveground in the Mediterranean or Middle East more than 1000 years ago, possibly in association with early agricultural civilizations.
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MOSQUITO GENETICS

Ancient origin of an urban
underground mosquito

Yuki Haba'?*1, PipPop Consortiumi, Petra Korlevi¢?,
Erica McAlister*, Mara K. N. Lawniczak®, Molly Schumer®,
Noah H. Rose?§, Carolyn S. McBridel2*

Understanding how life is adapting to urban environments
represents an important challenge in evolutionary biology. In
this work, we investigate a widely cited example of urban
adaptation, Culex pipiens form molestus, also known as the
London Underground mosquito. Population genomic analysis of
~350 contemporary and historical samples counters the popular
hypothesis that molestus originated belowground in London
<200 years ago. Instead, we show that molestus first adapted to
human environments aboveground in the Mediterranean or
Middle East over the course of more than 1000 years, possibly in
association with ancient agricultural civilizations of the Middle
East. Our results highlight the role of early human society in
priming taxa for contemporary urban evolution. They also provide
insight into whether and how molestus contributes to West Nile
virus transmission in modern cities.

The rise of modern cities is rapidly reshaping our planet and impos-
ing new selective pressures on the living organisms around us. Many
species have begun to adapt to these distinct challenges. A review of
the literature highlights at least 130 examples of animals, plants, and
microbes that have evolved responses to dense urban environments
(I). Yet how such adaptations arise and the amount of time that they
require to do so remain poorly understood. As urbanization acceler-
ates over the coming decades (2), there is a pressing need to better
understand the mechanisms and timescale of urban adaptation.
One of the most widely cited examples of urban adaptation involves
the northern house mosquito Culex pipiens Linnaeus 1758 (Fig. 1A).
Cz. pipiens is common in temperate zones across the world (3, 4). In
Europe and North America, an ancestral form has long been known
as a bird-biting mosquito that requires open space for mating (i.e., will
only mate readily outdoors) and pauses reproduction (i.e., diapauses)
during the cold northern winter (Fig. 1, B and C, blue) (3). However,
a derived, human-biting form thrives in urban belowground environ-
ments, such as subways, cellars, and cesspits, and differs from its
aboveground counterpart in ways that seem perfectly suited to subter-
ranean life (Fig. 1, B and C, red) (3). The belowground mosquitoes are
able to mate in confined, indoor spaces and remain active in winter.
Adult females readily bite humans and other mammals. Yet if hosts
are scarce, they can develop a first clutch of eggs without taking any
blood, a trait known as autogeny. Despite this array of genetically
based behavioral and physiological differences, the two mosquitoes
show no consistent morphological differences (3). They are formally
considered distinct forms: the bird-biting Cx. pipiens f. pipiens Linnaeus
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1758 and the human-biting Cx. pipiens f. molestus Forskal 1775 (5),
hereafter referred to as simply pipiens and molestus, respectively.

The sophisticated adaptations of molestus to urban belowground
environments have led to much speculation over when and where the
form originated. A widely cited hypothesis suggests that molestus
evolved in the London Underground subway system, where it first
became famous in the 1940s (I, 6-11). During World War II, many
Londoners took nightly refuge in the city’s subway system to escape
intense Nazi bombing. Sleeping on subway platforms protected people
from bombs but made them easy targets for molestus, which became
known as the London Underground mosquito and was hypothesized
to have evolved there during the ~100-year period between subway
tunnel construction and mosquito discovery (Fig. 1D, left) (6, 12). A
London Tube origin is unlikely because molestus was reported in cel-
lars and cesspits in France, Denmark, Germany, and the former USSR
10 to 25 years before its discovery in London (3, 13-15), but an urban,
belowground origin in northern Europe within the past few hundred
years remains possible. Recent reviews have pointed to molestus as
one of the best candidates for rapid urban adaptation (7, 7-11), and
major science news outlets have treated this hypothesis as fact (16-21).
The idea that a new, reproductively isolated urban taxon with diver-
gence in multiple, complex behaviors could emerge de novo in just a
few hundred years is striking and sets a new bar for the number and
complexity of changes that we might expect to occur in modern cities
over short timescales.

An alternative hypothesis, which is mentioned in the literature but
less prominent, posits that molestus first adapted to humans in an
aboveground context, long before the rise of modern cities (Fig. 1D,
right) (22, 23). Although molestus is confined to belowground habi-
tats in cold regions, it thrives aboveground in warmer climates, par-
ticularly in the Mediterranean basin (23). Moreover, early records
document molestus-like mosquitoes breeding and biting humans
aboveground in Egypt, Croatia, and Italy 50 to 100 years before they
were discovered in basements and subways (24-26). According to
this alternative scenario, many of the traits that allow molestus to
thrive in urban belowground environments would represent exapta-
tions, or traits that first arose in a different time and context (27).
An aboveground Mediterranean origin could also push the timing of
molestus’s origin back thousands of years, to an era when humans
first started forming dense agricultural communities. Early allozyme
and microsatellite studies indicate that contemporary molestus popu-
lations from aboveground and belowground habitats are genetically
related (22, 28), but the validity and timing of a putative aboveground
origin remain to be tested.

In this work, we leverage the first large population genomic data-
set for Cx. pipiens to infer when, where, and in what ecological
context molestus first evolved. Beyond its enigmatic origins, molestus
is a competent disease vector. Aboveground molestus served as the
primary vector of a human-specific filarial nematode prevalent in
Egypt throughout the 1900s (3, 23). molestus is also implicated in
the transmission of West Nile virus (WNV) and other arboviruses
across Eurasia and North America over the past several decades
(29, 30). Solving the mystery of molestus’s origins thus has important
implications for understanding both rapid urban adaptation and
emerging threats to human health.

Form molestus is genetically isolated from pipiens across

the Western Palearctic

Multiple lines of evidence indicate that molestus first split from pipiens
somewhere in the Western Palearctic (a region that includes Europe,
North Africa, and western Asia) (31) before spreading to other parts
of the world. However, the structure of populations across this region
has been difficult to decipher owing to the absence of morphological
differences. Analysis of one or a small number of genetic loci shows that
the two forms are isolated in northern Europe, where harsh winters
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Fig. 1. Cx. pipiens form molestus behavior, ecology, and hypothetical origin. (A) Female Cx. pipiens complex mosquito. (B) Behavioral and physiological characteristics of
Cx. pipiens forms in northern Eurasia. At warmer latitudes, molestus can breed aboveground. (C) Example microhabitats: a city park (pipiens) and the flooded basement of an
apartment complex (molestus). (D) Two hypotheses describing molestus’s origin. Hypothesis 1 (left) posits that belowground molestus evolved from local aboveground pipiens
insitu within the past 100 to 200 years. Hypothesis 2 (right) posits that molestus first evolved in an aboveground context thousands of years ago, possibly in association with
early agricultural societies of the Mediterranean basin, with colonization of belowground habitats (dotted arrow) occurring much later (22,23). [Photos by Lawrence Reeves
(mosquito); Yuki Haba (city park); Colin Malcolm (flooded basement), licensed under CC-BY]

confine molestus to belowground environments (22, 23). However,
molestus and pipiens appear to be more genetically similar in south-
ern Europe, where both breed aboveground, and the two forms may
even collapse into a single panmictic population in North Africa
(22, 23). To better resolve the situation with high-resolution genomic
data, we sequenced the whole genomes of 357 Cz. pipiens individuals
collected in 77 locations scattered across the Western Palearctic
(Fig. 2A; n = ~5 individuals per population at 12.9x median coverage).
These data are part of a larger collection of 840 genomes to be pre-
sented in a companion study of the deeper evolutionary history of
Cxz. pipiens across its entire global range (32) (figs. S1 to S3).

We used a principal components analysis (PCA) to assess variation
across the Western Palearctic using 504,000 high-quality single-
nucleotide polymorphisms (SNPs) (32) (Fig. 2B). The first major axis
(PC1) accounted for by far the most variation (39.5%; fig. S4A) and
cleanly separated belowground and aboveground samples from north-
ern latitudes (Fig. 2C). PC1 thus represents divergence between pipiens
and molestus. Sequenced mosquitoes with known biting or egg-laying
behavior (n = 13), including those from lower latitudes, were also ar-
rayed across PC1 according to expected form (fig. S5A). PC2 explained
~4% of genetic variation across the sample (Fig. 2B) and was strongly
correlated with longitude (fig. S4B).

Our sample included aboveground mosquitoes from London, which
clustered with other northern European pipiens, but we were not given
permission to collect mosquitoes in the London Underground. To con-
firm that the genetic picture today reflects the one present when iconic
World War II populations were first discovered, we used a minimally
destructive approach (33) to extract and sequence DNA from 22 mu-
seum specimens collected at 15 sites in London between 1940 and 1985
(table S2; mean genome-wide coverage = 5.8x). Metadata for most
samples did not specify microhabitat, but the sampling locations in-
cluded the sites of major underground stations, including Paddington,
Monument, and Barking. A joint PCA with contemporary samples
placed the historical London specimens in the same two genetic clusters
that characterize mosquitoes at that latitude today (Fig. 2C, inset, and
fig. S5B). We conclude that the genetic character of pipiens and molestus
populations in northern Europe has been stable for the past 75 years.

Form pipiens and form molestus are genetically well separated in
the north, but our data confirm that they are less distinct at southern
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latitudes. Mosquitoes on both the molestus and pipiens ends of the PC1
axis have increasingly intermediate values as one moves from northern
Europe toward Africa, creating a U-shaped pattern when PCl1 is plotted
against latitude (Fig. 2C). Notably, however, they never completely
merge; even southern populations fall into two discrete genetic clus-
ters with a break at PC1 ~ 0.04 (Fig. 2C, dashed line). Moreover, indi-
viduals from these two clusters were frequently collected in the same
traps, which highlights the absence of microgeographic barriers (Fig.
2D). Our whole-genome data thus show unequivocally that pipiens
and molestus are able to coexist in sympatry across the region (34, 35).
They are genetically closer in the south, and several individuals in our
sample may represent early-generation hybrids (e.g., see asterisk
in Fig. 2C). Despite this, we see no evidence of collapse into a panmic-
tic population.

Ancestral latitudinal gradient within pipiens suggests that
molestus arose at the southern edge of the Western Palearctic
The genetic similarity of molestus and pipiens at southern latitudes is
believed to result from increased gene flow (22, 23); hybridization
should be rare in the north, where the two forms occupy different
microhabitats, but increasingly common in the south, where both
forms breed aboveground (Fig. 3A). To test this hypothesis, we exam-
ined the latitudinal cline within pipiens, which is much stronger than
that within molestus (Fig. 2C). More specifically, we used genome-wide
13 statistics (36) to model each pipiens population as a mix of “pure”
pipiens and molestus reference populations taken from their northern
extremes. Many European and west Asian populations showed evidence
of mixing (Fig. 3B), but the signal was not latitudinal [Fig. 3C; Pearson’s
correlation coefficient () = —0.022, P = 0.90]. Moreover, North African
pipiens populations, which are genetically closest to molestus, showed
no signs of admixture (Fig. 3B). These results cast doubt on the long-
standing hypothesis that latitudinal variation within pipiens is driven
by hybridization with molestus.

An alternative hypothesis, which has not been explored in the lit-
erature, is that the latitudinal gradient within pipiens predates the
evolution of molestus. In this case, southern pipiens could be geneti-
cally closer to molestus not because they mix with molestus, but be-
cause they gave rise to molestus (Fig. 3D). Consistent with this idea,
we found that southern pipiens—and especially pipiens populations

20f13

GZ0Z ‘Y2 4800100 U0 BI080US 105 MMM//SANY WO.J PaPe0 lUMOQ



RESEARCH ARTICLE

A c
Aboveground Belowground @ Sglmpatric mol/pip
aboveground
-~ Py | 60 molestus pipiens @se
F se 2 L °®
* A L )
LGS o o dome .
) 3 A < ®
° M .v:. oe § Histcgr;cmalplLec;ndon
® =
0 0 ® ‘ >
° ¢ tiohg S — 401 ®. e
0 ” @. ) T e
S e% ° R
® '@ B e .
e t §
304
EZ==n i Fet
mol jE—— Feid -
Population mean PC1 0.10 0.05 PC1 0 0.05
D _
0.10 Belgium 0@ Same population PP
‘ . Switzerland ® o000
0.054 Serbia ® Same trap
o ®
9 ~.. :’ Russia ) e O ®
oo tay | @ @ @@ —
2
) "' Spain -——@@®— @ @ ————
& —0.054 Greece ® L] @
‘ Turkey - @—— 0O @®
-0.10 v Armenia @ oo
: \ Portugal -—— @@ 0@
-0.151— T T T T -
0.10 0.05 0 -0. 05 0.10 0.05 0 -0.05
PC1 (39.5%) PC1

Fig. 2. Form molestus is genetically isolated from pipiens across the Western Palearctic. (A) Sampled populations, colored by average PC1 value. Circles and triangles
represent aboveground and belowground locations, respectively. Half-circles indicate that both pipiens and molestus were collected in the same or nearby aboveground sites.
(B) PCA of genetic variation across all samples in (A) (n = 357). (C) PC1 values plotted against latitude, with marginal frequency histogram at top. The gray dashed line indicates
a natural break in the histogram, inferred to separate pipiens and molestus (PC1 = 0.04). Thick outlines mark individuals from North Africa and the Middle East. The asterisk
marks a putative F1 hybrid from southwest Russia (Stavropol). (Inset) Position of historical London samples in a combined PCA with contemporary mosquitoes (n = 22,
collected 1940 to 1985; see also fig. S5). (D) PCL1 values for pipiens and molestus individuals collected in the exact same day and trap (green lines) or in the same general

location (within 5 to 45 km; gray lines).

in the Mediterranean basin—share as many, or more, derived alleles
with a reference molestus population from the north as they do with
areference pipiens population from the north (Fig. 3E). Moreover, the
overall signal of relative allele sharing was strongly latitudinal (Fig. 3F;
Pearson’s 7 = 0.88, P = 2.5 x 10™*). Taken together, we conclude that
the latitudinal gradient within pipiens is ancestral—perhaps reflecting
adaptation to variation in temperature and/or precipitation—and that
molestus is most likely derived from populations in the south.

Form molestus evolved thousands of years ago in the
Mediterranean region
We further explored the geography of molestus’s origin by constructing
a distance-based (Day) tree for Cx. pipiens individuals from the full
global sample (32). Contemporary gene flow can obscure ancestral
relationships in phylogenetic trees. We were therefore careful to ex-
clude any population or individual that showed signs of recent intro-
gression from the other form (based on D and f-branch statistics;
figs. S6, S7, and S11) or from Culex quinquefasciatus, a tropical sibling
species that hybridizes with Cz. pipiens in the Americas and Asia (based
on NGSadmix analysis) (32). We also excluded low-coverage samples
(<10x). The remaining 204 mosquitoes provided broad coverage across
the Western Palearctic and included smaller numbers of representa-
tives from other geographic regions.

The resulting tree provided strong support for an aboveground
Mediterranean origin of molestus. First, all molestus samples formed
a monophyletic clade that was nested within Mediterranean pipiens
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(Fig. 4A and fig. S8). Second, the earliest branching lineages within
molestus corresponded to aboveground mosquitoes from the east-
ern Mediterranean—specifically Egypt, Israel, and Greece (Fig. 4A).
Egyptian and Israeli samples were also among the most genetically
diverse, together with two populations from the Caucasus region
(Armenia and southern Russia) (Fig. 4B). Finally, whereas belowground
molestus from northern latitudes formed tight, derived clades, above-
ground molestus populations from North Africa, the Middle East, and
southern Europe were scattered across the base of the tree (Fig. 4A).

Across the Mediterranean region, the Middle East is a particularly
compelling location for the emergence of molestus because it is the
only place within the Western Palearctic where molestus is known to
occur on its own, in the absence of pipiens (Fig. 2A) (28, 37). The
Middle East was also home to some of the earliest agricultural societ-
ies, which were thriving in Mesopotamia and Egypt by 3000 BCE (38).
A Middle Eastern origin thus raises the possibility that molestus first
adapted to human hosts and habitats in isolation from pipiens and on
a timescale of thousands, rather than hundreds, of years (Fig. 1D,
right) (22, 23).

We explored the timing of molestus’s origin using a cross-coalescent
analysis of DNA haplotypes from Middle Eastern molestus (Egypt)
and Mediterranean pipiens (Morocco) (n = 2 individuals with ~50%
coverage from each population) (39). As expected, the relative cross-
coalescence (rCC) rate starts near zero in the recent past, when the two
populations are isolated, but rises monotonically and eventually pla-
teaus near one, going backward in time, when they merge into a single
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Mediterranean climate zone. Both (C) and (F) include a linear regression line with 95% confidence interval and Pearson's correlation test statistics. Across all analyses, only

populations with four or more individuals were included.

ancestral population (Fig. 4C). Accurate assignment of dates to this
rCC curve requires knowledge of the de novo mutation rate () and
generation time (g), neither of which has been directly measured for
Cx. pipiens in nature. However, plausible literature estimates for p (4.85 X
107%) and g (20 days) (32) suggest that peak rates of divergence occurred
~2000 years ago (Fig. 4C, dashed arrow), whereas minimum and maxi-
mum reasonable values (32) lead to split times anywhere between 1300
and 12,500 years ago (Fig. 4C, gray arrowheads). We obtained a similar
range of split times when using an alternative pipiens population from
the southern Caucasus region (Armenia; fig. S10). The temporal resolu-
tion of these inferences is limited, and the haplotype phasing that
underlies them adds additional uncertainty (32). Nevertheless, they
are inconsistent with a postindustrial origin for molestus in northern
Europe (Fig. 1D, left) and instead support an ancient origin, most likely
associated with early agricultural civilizations of the Mediterranean
or Middle East (Fig. 1D, right).

Introgression from molestus into aboveground pipiens

is associated with human density

Recent urbanization did not drive initial evolution of molestus, but it
may have driven range expansion and increased contact with pipiens
across the northern hemisphere—contact that is thought to have con-
tributed to the emergence of WNV in human populations over the past
several decades (29, 30). WNV is a mosquito-borne virus that primarily
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infects birds and is effectively amplified within avian populations by
bird-biting pipiens (Fig. 5A). Spillover to dead-end human hosts can
only occur if local pipiens mosquitoes are also willing to bite humans,
a broadening of biting behavior that may be driven by gene flow from
molestus in urban areas (40-42). This idea has spurred efforts to detect
and quantify admixture between pipiens and molestus in natural
populations (23); yet, we have shown that much of the genetic signal
previously attributed to mixing between forms instead represents an-
cestral variation (Fig. 3). Form pipiens likely receives genetic input
from molestus in some places, but exactly where and to what extent
are not known.

We used f-branch statistics to reassess levels of gene flow from
molestus into pipiens while controlling for ancestral variation. f~branch
statistics allow simultaneous quantification of gene flow among mul-
tiple branches in a tree (43). To account for the sister relationship
between forms in the south (Fig. 3D), we specified a fixed tree in which
focal pipiens populations were genetically closer to molestus than to
a reference pipiens population from the far north (Fig. 5B). Deviations
from this topology (i.e., for focal populations from the north) can then
be modeled as “gene flow” into the focal pipiens population from the
northern reference (Fig. 5B, arrow 1). As expected, the resulting signal
was strongly latitudinal (Fig. 5C and fig. S11A). The tree also included
two potential sources of molestus introgression, which allowed us to
distinguish them. We could not detect gene flow into any pipiens
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population from the early branching molestus lineage in Egypt
(Fig. 5B, arrow 2, and fig. S11C), consistent with its isolated location
at the southern edge of the contemporary range. However, we detected
substantial gene flow into some pipiens populations from a derived
molestus lineage present in the north (Fig. 5B, arrow 3; Fig. 5D; and
fig. S11B).

Levels of gene flow from northern molestus into pipiens did not
covary with latitude (Fig. 5D and fig. S11B) but showed a positive as-
sociation with human population density (44-46). The more humans
living within 1 to 10 km of each sampling location, the more likely we
were to observe introgression (Fig. 5E). This relationship was most
significant when averaging human density across an area with a 3-km
radius [linear regression, P = 0.003, coefficient of determination (RY) =
0.21; Fig. 5, E and F], which suggests that levels of urbanization im-
mediately around collection sites are most predictive of hybridization.
Moreover, this signal was driven primarily by the consistent presence
of ~5% introgression in truly urban areas, defined by the European
Commission as having >1500 people per square kilometer (Fig. 5F)
(47). Introgression was less predictable at rural sites (P = 0.07, R> =
0.11, excluding urban centers). Inclusion of three statistical outliers in
this analysis (Fig. 5F, gray dots) slightly weakened the trend but still
indicated a strong association (regression, P = 0.005, R® = 0.18).
Notably, a site in Paris showed ~15% introgression, as one might expect
on the basis of its density, but we could not detect any genetic input
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from molestus in London. Such geographic variability in levels of gene
flow may in part reflect whether local pipiens and molestus popula-
tions are infected by compatible or incompatible strains of Wolbachia
pipientis bacteria (48, 49). Taken together, our results counter the
long-standing idea that gene flow between pipiens and molestus is
greatest at southern latitudes (where both forms breed aboveground)
and instead reveal a complex landscape of introgression that is mod-
estly associated with levels of human activity.

Discussion

Understanding how life can adapt to rapid urbanization is an im-
portant challenge in evolutionary biology. As examples accumulate
in the literature, each case provides a reference for the potential speed
and character of adaptation. In this work, we revisit one of the most
iconic examples using high-resolution population genomic data. Instead
of evolving in the subway system of a northern European city over the
course of 100 to 200 years, our results indicate that Cz. pipiens f. molestus
first adapted to human habitats aboveground at Mediterranean lati-
tudes over the course of 1000 or more years (Fig. 6). We cannot say
exactly where within this region adaptation first occurred, but bio-
geographic and archeological evidence point to Egypt as a likely ori-
gin. Form molestus is particularly abundant in Egypt’s Nile basin and
occurs there on its own, without pipiens. Early agricultural settle-
ments along the Nile would have provided a new “human” niche in
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an area otherwise too arid to support robust Cx. pipiens populations.
Irrigation systems and latrines offer rich breeding sites for larval
stages, and abundant humans and domestic mammals offer a reliable
source of blood for adult females. Ancient pharaonic artifacts and
papyrus are also consistent with the idea that molestus was spread-
ing filarial worms among humans in the Nile basin as many as
2000 years ago (23).

Rather than benchmarking the speed and complexity of urban evo-
lution, this updated history highlights the role of preexisting traits, or
exaptations, in adaptation to urban environments (27). Three of the
key behaviors that allow molestus to thrive belowground are present
in contemporary, aboveground populations in Egypt and almost cer-
tainly arose in ancient times: mammal biting, the ability to mate in
confined spaces, and the ability to lay a first clutch of eggs without a
blood meal (37, 50). A fourth trait, lack of diapause, which limits
molestus to belowground environments at northern latitudes, is also
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present in the Middle East today (37). Form molestus was thus primed
to take advantage of northern, belowground environments before they
arose. It joins a host of other urban taxa that first became dependent
on humans thousands of years ago, including brown rats (51), house
mice (52), cockroaches (53), house sparrows (54), and the dengue mos-
quito Aedes aegypti (55).

Ancient origins do not preclude additional, contemporary evolution
(51, 53). Once established belowground, molestus was likely exposed
to a new suite of challenges. For example, many belowground habitats
lack vertebrate hosts altogether, providing a competitive edge to fe-
males that can develop eggs without a blood meal. This trait, called
autogeny, is present in contemporary Middle Eastern molestus but
only at low frequency (37, 50). By contrast, it occurs at high frequency
in some aboveground molestus from southern Europe (34) and is
nearly fixed in northern belowground populations (Fig. 1B). Future
work should explore whether increased autogeny may provide a bona
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fide example of rapid, urban evolution in belowground environments
and whether this change arose just once or many times in parallel (56).
Our distance tree (Fig. 4A) suggests that belowground populations
from northern Eurasia are all closely related but that those from the
east coast of North America (and possibly Australia) represent inde-
pendent colonization events.

Our findings also carry public health implications. The emergence
and spread of WNV over the past two decades have triggered intense
interest in quantifying admixture between molestus and pipiens be-
cause hybridization is thought to drive spillover from birds to humans
(40, 41). Yet, we show that true patterns of admixture are obscured by
ancestral relationships at southern latitudes. For example, it is cur-
rently standard practice to identify hybrids using a single locus marker
called CQI11 (57). Pure pipiens and molestus were thought to be fixed
for different alleles at this locus, such that heterozygotes must be
hybrids. We instead suggest that pipiens harbors ancestral variation
at this locus. The “molestus” allele was likely present at moderate
frequency in the Mediterranean basin before molestus arose and re-
mains present in pure Mediterranean pipiens today. Accurate infer-
ences of gene flow will require more substantial genomic data and
more complex analytical methods (e.g., Fig. 5).

After accounting for ancestral variation, we show that hybridization
between pipiens and molestus is associated with human activity (Fig.
5E) but is no more common at southern latitudes within the Western
Palearctic than it is in the north (Fig. 5D). The latter result suggests
the presence of strong reproductive barriers, possibly related to diver-
gence in mating behavior (35), that go beyond physical isolation of
forms in different microhabitats. Future work should also consider the
possibility that Mediterranean pipiens populations are somewhat in-
termediate between canonical northern forms at the behavioral—as
well as the genetic—level (568). They may be effective bridge vectors even
in the absence of genetic input from molestus. WNV represents an in-
creasing threat to public health across the northern hemisphere, with
many of the most severe outbreaks occurring within the past 5 years
(59, 60). Taken together, we hope that our work opens the door to more
incisive investigation of the potential links between urbanization, gene
flow, ancestral variation, and viral spillover.

Materials and methods

Culex pipiens Population Genomics Project

This study is one of two flagship studies associated with the Culex
pipiens Population Genomic Project, also known as PipPop. The current
study investigates the origins of form molestus, whereas the compan-
ion study will examine the deeper evolutionary history of the species
and global population structure and genomic diversity. Both studies
make use of 840 individual whole-genome sequences of Cx. pipiens
complex mosquitoes (Cx. pipiens sensu lato) and outgroups (fig. S1 and
table S1). Within the complex, we specifically targeted Cx. pipiens s. s.
Linnaeus 1758 and hybrids (n = 688), but we also sequenced smaller
numbers of Ca. quinquefasciatus Say 1823 (n = 101), Culex pallens
Coquillett 1898 (n = 33), and Culex australicus Dobrotworsky and
Drummond 1953 (n = 5). Culex torrentium Martini 1925 (n = 9) was
included as an outgroup, and a handful of sequenced mosquitoes were
inferred to belong to more distant, unknown taxa (n = 4; table S1). A
total of 790 genomes were sequenced for PipPop, whereas 50 were
previously published [40 from (61) and 10 from (62)].

Mosquito collection: We collected and sequenced 790 mosquitoes from
163 populations spread across 44: countries in the Americas, Europe,
Africa, Asia, and Australia, targeting n ~ 5 individuals per population
(fig. S1 and table S1). 752 mosquitoes (95%) were collected from 2014
to 2021, and the remaining 38 (5%) were collected from 2003 to 2012.
Mosquitoes were collected from both aboveground (87%) and below-
ground (13%) sites. Belowground sites included basements of residen-
tial buildings, manholes, stormwater drains, cesspits, subway systems,
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and underground floors of a parking garage. Aboveground sites spanned
a variety of habitats, from dense urban environments to residential
areas to natural parks. 786 mosquitoes (99.5%) were wild-caught and
4 individuals (0.5%) came from laboratory colonies originally derived
from belowground sites in Amsterdam, Netherlands or Athens, Greece.
Of the 786 wild-caught mosquitoes, 462 mosquitoes were collected
as adults, 318 as larvae or pupae, and 6 as eggs. Larvae and pupae
were collected from dense breeding sites to avoid sampling siblings.
Egg samples were reared to adults in the laboratory before sequenc-
ing, and only one individual per egg raft was used. Mosquitoes were
killed either by submersion in >95% ethanol or snap freezing. Detailed
sample metadata, including individual and population IDs, GPS coor-
dinates, collection date, life stage, sex, and trapping method, can be
found in table S1.

Mosquito identification: Mosquitoes collected as adults or reared to
adults before preservation were identified as Ca. pipiens sensu lato
(i.e., Ca. pipiens species complex) or Cx. torrentium (outgroup) using
standard morphological metrics. We further confirmed that samples
belonged to the Cz. pipiens complex or Cx. torrentium after DNA ex-
traction (see below) using a multiplex polymerase chain reaction (PCR)
targeting the ace-2 locus (63) followed by visual inspection of ampli-
con sizes on a gel. Samples with no bands or unexpected band sizes
were excluded before continuing to library preparation.

DNA extraction and genome sequencing: Genomic DNA was extracted
from whole bodies using the NucleoSpin 96 DNA RapidLyse kit (Macherey-
Nagel, Germany). After PCR-based species identification (see above),
we prepared DNA sequencing libraries using Illumina DNA Prep Kits
(INlumina, USA) with custom dual-unique barcodes. Approximately 80
barcoded libraries were pooled and sequenced on individual S4 lanes of
a Novaseq 6000 PE150 sequencer (Illumina, USA), with a target ge-
nome-wide coverage of 10 to 15x (fig. S1B). However, one pool includ-
ing Mediterranean and Middle Eastern mosquitoes was sequenced
across four S4 lanes (a full flow cell) to achieve higher coverage (~60x)
for use in cross-coalescence analyses (fig. S1B).

Sequence data processing and variant calling
See fig. S2 for a schematic summary of our data curation pipeline.

Read processing and mapping: Raw reads were assessed for quality
using FastQC v.0.11.8 (64), and low-quality bases and adapters were
trimmed using Trimmomatic (65). Trimmed reads were mapped onto
the chromosome-scale CpipJ5 genome assembly for Cx. quinquefasciatus
(62) because a chromosome-scale assembly for Cx. pipiens s. s. was not
available at the time of analysis. We used BWA-MEM v.0.7.17 (66) to map
the reads with default settings and identified and removed optical
and PCR duplicates with Picard MarkDuplicates v.2.20.2 (67). We then
used GATK v.3.8 (68) to perform local realignment around small inser-
tions and deletions. We calculated genome-wide coverage after de-
duplication using Mosdepth v.0.3.3 (69). We used the deduplicated,
realigned reads for all the analyses below.

Identification of accessible regions: We used 50 Cx. pipiens s. s. individu-
als (each with >20x coverage) and 50 Cx. quinquefasciatus individuals
(each with >10x coverage) to identify regions of the genome with
reliable read mapping across the Cx. pipiens species complex. More
specifically, for each taxon separately, we pooled reads across the 50
individuals and looked for genomic sites with 0.5 to 1.5X normalized
coverage, where normalization was based on the species-specific av-
erage at coding sites. More than 88% of coding sites fell within this
“reliable” coverage window in both species, whereas only ~27% of non-
coding sites did so (fig. S3, A and B). Across both coding and noncod-
ing sites, more reads mapped reliably for Cz. quinquefasciatus than
for Cx. pipiens s. s., as expected given our use of a Cx. quinquefasciatus
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reference assembly (62). The difference was minor for coding sites but
more substantial for noncoding sites, of which 60% and 34% showed
reliable mapping in Cx. quinquefasciatus and Cx. pipiens s. s., respec-
tively (fig. S3, A and B). Notably, although sites with reliable coverage
in both species were scattered across the genome, those with reliable
coverage in only one of the other species were not randomly distrib-
uted (fig. S3C). In particular, several small, discrete regions of chro-
mosomes 2 and 3 showed unexpectedly better mapping in Cz. pipiens
s. 8. than in Cz. quinquefasciatus (fig. S3C, right). We suspect that these
regions represent small chunks of introgression from Cax. pipiens s. s. into
the JHB laboratory strain that was used to generate the CpipJ5 assem-
bly. We limited all analyses in this study to sites that showed 0.5 to
1.5% normalized coverage in both species (fig. S3C, left). We further lim-
ited our analysis to nonrepetitive sites, as indicated in a RepeatMasker
(v 4.0.9) analysis conducted by the authors of the reference assembly
(62). Taken together, our analyses consider ~131 million accessible sites
or ~23% of the total 559-mega-base pair (Mbp) genome.

Variant calling and SNP filtering: We called single-nucleotide variants in
all 840 individuals using BCFtools v1.13 (70). Variant calling was par-
allelized across multiple 20-Mb chunks of the genome. In addition to
masking the inaccessible sites and repeat elements described above,
we also masked multiallelic SNPs, indels, and SNPs falling within 5 bp
of indels. This gave us an initial set of biallelic SNPs that fell in the ac-
cessible regions. We then calculated key statistics for each SNP and re-
moved those with QUAL < 50, MQ < 50, >10% individuals with missing
genotypes, average mean depth across all samples of <10x or >30x, or
alleles of GQ < 20. These cutoffs were chosen after inspection of the dis-
tribution of each statistic, following GATK hard-filtering best practic-
es for nonmodel species (77). After filtering, we were left with 30.6 million
high-quality, accessible, biallelic SNPs (of ~131 million total accessible
sites). This full SNP set was used for all analyses except where other-
wise specified.

Individual filtering: We removed two samples from Raleigh, NC, USA,
with <2x coverage and >50% genotype missingness (RAL5, RALSG).
We also filtered the full sample set for kin based on pairwise KING
kinship coefficients computed in NgsRelate v.2.0 (72). Almost all pairs
showed low relatedness, as expected (mean Kinship coefficient
0.00026; fig. S3D). However, a subset of pairs showed higher values,
largely falling in one or more of the following categories: (i) pairs of
larvae from the same pool, (ii) pairs from the same belowground col-
lection, and/or (iii) pairs from the same laboratory strain (fig. S3D).
We identified all pairs of individuals with kinship >0.09 and exclud-
ed the individual with lower coverage. We additionally excluded three
individuals (PAR4, OSJi4, and KAV5) that showed unexpectedly high
relatedness to many individuals from other populations, and we ex-
cluded one individual from Malaysia (MELS5) that clustered with North
American samples. The unexpected relatedness of PAR4, OSJi4, and
KAV5 to many other individuals could not be explained by their posi-
tion in the 96-well plates used to process samples nor by low sequence
coverage. Although the Malaysian sample could conceivably be a mi-
grant, we chose to remove it out of an abundance of caution.

Final sample set: After filtering low-quality individuals and kin, we were
left with 743 unrelated mosquitoes. A few analyses presented here ad-
dress the full global sample. However, unless otherwise specified, this
study focuses on the subset of 357 individuals collected in the Western
Palearctic (Europe, North Africa, and western Asia).

Analysis of population structure

We conducted a PCA of variation among Western Palearctic individuals
(n = 357; Fig. 2 and fig. S4). Because excessive linkage disequilibrium
(LD) among genetic markers can lead to PC(s) of LD structure rather
than population structure (73), we used Plink v.1.90 (74) to select a
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subset of 503,921 unlinked SNPs (--indep-pairwise 200 20 0.2). We then
used PCAngsd v.1.10 (75) to estimate a covariance matrix and the prin-
comp function in the R package stats v.3.6.2 to conduct the PCA (76).

Sequencing and analysis of historical specimens from London

To understand the relationship between historical and contemporary
molestus populations, we extracted genomic DNA from 22 pinned
Culex specimens in the National History Museum, London (table S2)
using a recently published, minimally destructive protocol (33). Briefly,
pinned specimens were removed from the main label pins and put in
a styrofoam box filled with wet paper towels for rehydration at 37°C
for 3 hours. Each rehydrated sample was then dipped in 200 pl of Lysis
Buffer C (200 mM Tris, 25 mM EDTA, 0.05% Tween-20, and 0.4 mg/ml
Proteinase K) and incubated at 37°C for 2 hours. Genomic DNA in the
lysis buffer was then purified using a modified MinElute (Qiagen) silica
column approach. After extraction, intact mosquito specimens were
rinsed in increasing percentages of ethanol (30% and 50%) and sent
back to the museum for critical point drying. Libraries of the purified
genomic DNA were created using NEB Next Ultra II DNA Library Prep
Kit (New England Biolabs) with no shearing and then purified using
2.2x SPRI (Beckman Coulter Agencourt AMPure XP) beads after li-
brary ligation and two times 1x SPRI after PCR amplification using a
KAPA HiFi HotStart Uracil+ ReadyMix PCR Kit. The final libraries
were sequenced on one lane of NovaSeq PE75 (Illumina).

Raw reads were run though the ancient DNA pipeline EAGER (77),
with the following processing parameters: trimming adapter se-
quence, trimming bases of quality score <20, removing sequences
shorter than 30 bp, merging overlapping paired reads (with default
minimum 11-bp overlap), aligning to the CpipJ5 assembly (62) using
BWA-MEM, removing PCR duplicates and unaligned reads for final
BAM files, and performing DamageProfiler to summarize ancient
DNA characteristics (50 C > T and 30 G > A substitutions, read length
in base pairs). We calculated genome-wide coverage after deduplica-
tion using Mosdepth (69) (mean = 5.77x, range = 1.05 to 9.22x). We
used ANGSD v.0.936 (78) to call genotype likelihoods (angsd -GL 1,
SAMtools model) for the historical samples at the subset of 503,921
unlinked, biallelic SNPs used for PCA of contemporary genomes (see
above ). We then merged these samples with the contemporary Western
Palearctic sample and conducted a joint PCA as described above
(PCAngsd followed by princomp).

Analysis of latitudinal gradient
We modeled each pipiens population in the Western Palearctic as a
mix of northern pipiens and molestus populations using genome-wide
/3 statistics (Fig. 3, A to C). Specifically, we used the threepop function
in Treemix v1.13 (79) to calculate f3(X; pipiens, molestus), where X repre-
sents a focal pipiens population, and the pipiens and molestus reference
populations came from Sweden (SWE) and Belgium (BVR), respec-
tively. We used a block jackknife approach to obtain the standard error
and compute Z scores, dividing the genome into blocks of 500 SNPs
(-k 500). A Z score of —3 was used as a significance threshold (79).
We also estimated the number of derived alleles shared by focal
pipiens populations with the same northern pipiens and molestus
reference populations using Dsuite Dtrios (80), with Cx. torrentium as
an outgroup. We specifically calculated the number of derived alleles
shared with molestus as a fraction of those shared with either pipiens
or molestus: n(ABBA)/[n(ABBA) + n(BBAA)] where A represents the
ancestral allele and B represents the derived allele as in the tree shown
in Fig. 3D.

Distance (Dxy) tree inference

We inferred a distance tree for all Cx. pipiens s. s. mosquitoes with >10x
genome wide coverage from the full global sample based on the num-
ber of pairwise nucleotide differences (Dxy). A Cz. torrentium indi-
vidual was included as an outgroup. As hybridization can confound
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relationships in distance trees, we used a variety of methods to iden-
tify and exclude populations or individuals that showed signs of
admixture. Using f3 tests we found that no molestus populations were
well modeled as a mixture of pipiens and molestus (fig. S6), suggest-
ing that introgression from pipiens into molestus is generally rare.
However, a more sensitive four-population test (Patterson’s D) found
small yet significant signs of introgression into some Mediterranean
molestus populations (fig. S7), which we then excluded from the tree.
Identification of pipiens populations that have received genetic input
from molestus is more challenging because introgression is con-
founded by the ancestral genetic gradient (Fig. 3). To overcome this,
we used the f-branch statistics (43) as presented in Fig. 5A (see
“Quantifying gene flow from molestus into pipiens” for details) and
then excluded all pipiens populations that showed nonzero intro-
gression. Finally, we excluded any pipiens or molestus individual with
>2% inferred ancestry from sibling species Cx. quinquefasciatus
based on an NGSadmix (75) analysis. Briefly, we ran NGSadmix on the
LD-pruned biallelic SNP set (see “Analysis of population structure”)
to infer individual ancestry proportions for 707 unrelated Cx. pipiens,
Cx. pallens, and Cx. quinquefasciatus individuals. Nine Cx. pipiens
individuals from sub-Saharan Africa were excluded from the NGSadmix
analysis as they are known to be reproductively isolated from
Cx. quinquefasciatus. When analyzed with K = 3, the three clusters
corresponded to Cx. quinquefasciatus, pipiens from northern lati-
tudes, and molestus/pipiens from the Mediterranean. As expected,
Cx. quinquefasciatus ancestry was rare in the Western Palearctic
(81) but extremely common in the Americas and Asia, leading to
exclusion of most, but not all, samples from these other geographic
regions. After filtering, we moved forward with Day tree inference
for n = 204 Cz. pipiens s. s. and n = 1 outgroup.

We used pixy v.1.2.7 (82) to estimate pairwise genome-wide Dxy
among the samples. We included invariant accessible sites in addition
to the full set of 30.6 million biallelic SNPs as exclusion of invariant
sites is known to generate bias (82). We bootstrapped genome-wide
Daxy estimates 100 times by sampling 1-Mb windows with replacement.
We then built the genome-wide neighbor-joining tree as well as boot-
strapped trees based on the resulting matrices of Dxy values using the
R packages ape v.5.6.2 (83) and ggtree v3.6.2 (84).

‘We annotated populations in the tree based on microhabitat of origin—
aboveground, belowground, or “suspected belowground.” Suspected
belowground populations included one Belgian population (BVR)
and one Chinese population (BEJ). The Belgian individuals were col-
lected aboveground in a heavily industrialized zone and suspected
of having escaped from a nearby tire factory. The Chinese individuals
were collected trying to bite the collector inside a residential building
in Tangshan, near Beijing.

Genetic diversity (rc)

We calculated genome-wide nucleotide diversity (x) for all molestus
populations included in the Dzy tree analysis using pixy v.1.2.7 (82).
A potential concern in doing so was that the eastern Mediterranean
molestus populations, including key populations from Egypt and Israel,
might have experienced introgression from Cz. quingquefasciatus below
the 2% threshold that we used for exclusion from the tree (8I). Even a
small amount of introgression from the divergent Cx. quinquefasciatus
could inflate diversity estimates. To identify putatively introgressed ge-
nomic regions, we used Dsuite Dtrios to calculate 4 admixture ratios
in nonoverlapping windows of fixed size (50 kb, 150 kb, 250 kb, 500 kb,
1 Mb) using the following tree: (((pipiens, X), quinquefasciatus), out-
group). Reference pipiens and quinquefasciatus populations came from
Sweden (SWE) and Saudi Arabia (JED). Cx. torrentium was used as the
outgroup. Almost all windows in most individuals showed 0 introgres-
sion, but we observed a minor peak at f4 ~ 0.5 in some samples (fig. S9),
likely representing the heterozygous state for introgressed haplotypes.
Homozygous quinquefasciatus haplotypes (4 ~ 1) were also sometimes
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present, but extremely rare. After comparing signal-to-noise ratios, we
settled on a window size of 150 kb and an f4 cutoff of 0.2 for calling
introgression (fig. S9). When computing diversity (xr), we masked every
150-kb locus for which any of the 99 molestus individuals showed sub-
stantial introgression from quinquefasciatus. In total, we masked ~5%
of all 30.6 million accessible sites.

Cross-coalescent analysis of pipiens-molestus split time

To estimate the divergence time between pipiens and molestus, we
carried out cross-coalescent analyses using MSMC2 following pub-
lished best practices (39, 85). Because MSMC2 requires phased ge-
nomes, we assembled a genome phasing panel using 551 individuals
with >10x coverage that represent all major geographic regions where
pipiens and molestus occur (mean coverage = 19.6X, range = 10 to
87.3x). We considered the full set of 30.6 million biallelic SNPs but
further filtered out genotypes with DP < 8. We first individually phased
nearby heterozygous sites based on information present in sequencing
reads using HAPCUT?2 (86). This read-based phasing alone was able to
phase up to ~90% of variants in the highest-coverage samples (range =
0.8 t0 90.2%, median = 22.9%). We then carried out statistical phasing
with the prephased variants across all individuals using SHAPEIT4
v2.2 (87) with a phase set error rate of 0.0001. To increase accuracy,
we increased the MCMC iterations in SHAPEIT4 from the default
value of 15 to 27 (--mcmc-iterations 10b + Ip+1b+1p+1b+ Ip + 1b +
1p + 10m), and we increased PBWT depth from the default value of 4
to 8. We phased variants on each chromosome separately. Although
MSMC?2 is known to be generally robust to phase-switch errors (85),
these may be common across longer distances, generating uncertainty
that should be considered when interpreting results.

‘We selected two high-coverage individuals from an Egyptian molestus
population (ADR, 47.5x and 56x coverage) and another two from a
Moroccan pipiens population (MAK, 56.1x and 67.5x). We first ex-
tracted phased genomes of focal individuals using BCFtools and
generated chromosome-specific masks based on average coverage
using bamcCaller.py (85). We also masked every 150-kb locus at which
the individuals showed signs of introgression from quinquefasciatus
(see above, f4 > 0.2; fig. S9). We then ran MSMC2 to characterize
rates of cross-coalescence within and between the two populations.
The time at which the relative rate of cross-coalescence exceeded 50%
was used as a point estimate of the split time (39). We bootstrapped
MSMC2 analyses using 100 replicates of three 200-Mb “chromo-
somes,” each composed of resampled blocks of 10 Mb. To explore the
robustness of our results to sample selection, we reran the analysis
with an alternative Mediterranean pipiens population for which
high-coverage genomes were available (MEG, Armenia; 50.8x and
20.7x) (fig. S10).

MSMC2 generates split time estimates in coalescent units (85), which
can be converted to years given a taxon-specific mutation rate (p) and
generation time (g). Because p and g have not been directly measured
in natural Cz. pipiens populations, we used plausible, literature-based,
best-guess values, as well as biologically reasonable minima and maxima.
For 1, we considered published data from mosquitoes and other insects
and set the reasonable range at 1.0 to 8.0 x 1077 (88-90). Our best
guess of p was 4.85 X 1079, taken from a recent estimate in A. aegypti,
a well-studied mosquito from the same subfamily (55). For g, our best
guess was 20 days, based on a study of an autogenous molestus labora-
tory colony (20 to 21.3 days) (9I). However, laboratory conditions are
often better than those found in nature (e.g., unlimited food), and
pipiens mosquitoes might be delayed in finding blood meals. We there-
fore extended the reasonable range up to 30 days. Taken together, we
used the following combinations of parameters for conversion of co-
alescent units to our best-guess, minimum, and maximum chronologi-
cal split times (Fig. 4D): p = 4.85 X 107 and g = 20 (best-guess split
time), p =8 X 10~ and g = 20 (minimum split time), p=1x 107 and
g = 30 (maximum split time).
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Quantifying gene flow from molestus into pipiens

To quantify gene flow from molestus into pipiens across the Western
Palearctic while accounting for the ancestral genetic gradient, we used
Dsuite Fbranch to calculate branch-specific f4 admixture ratios (43)
(Fig. 5 and fig. S11). We specified the tree shown in Fig. 5B and esti-
mated gene flow into focal pipiens populations from the three other
branches. Latitudinally varying gene flow from a northern pipiens
population (SWE, Sweden, arrow 1) accounted for the ancestral gradi-
ent. Gene flow from a Middle Eastern molestus population (ADR, Egypt,
arrow 2) and a northern molestus population (BVR, Belgium, arrow
3) allowed us to isolate genetic input from molestus subsequent to the
split with pipiens.

We used a linear modeling framework to explore a potential associa-
tion between molestus gene flow (Fig. 5D) and human population
density (a proxy for urbanization). We first downloaded 30-s-resolution
population density data from the Gridded Population of the World v4
(92) and compared the effect of density on introgression when averag-
ing density within circles of the following radii (centered around col-
lection sites): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30,
40, 50, 60, 70, 80, 90, and 100 km. In a simple linear regression exclud-
ing three outlier populations (PAR, LND, FON, Cook’s distance > 4),
human density had a significant effect using radii of 1 to 10 km, but
not across larger distances (Fig. 5E). The model with human density
averaged across a 3-km buffer explained the most variance (R* = 0.21)
and was used in the analysis shown in Fig. 5F. We also asked whether
climate could explain additional variance in molestus introgression
across populations by adding WorldClim2 bioclimatic variables (Biol
to Biol9) (93) to the human density only model one at a time, again
in a linear modeling framework. None of the bioclimatic variables
significantly improved the model. Bio8 (mean temperature of the wet-
test quarter) was the only variable that had a marginal effect (linear
model P = 0.09).

lllustration credits

Illustrations used in Fig. 4C and Fig. 5A are downloaded and modified
from Freepik.com (Wheat), Vecteezy.com (Pharaoh and Glacier), and
Phylopic.com (bird and human).
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